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Abstract This is a documentation on the Stanford PFSS model. Detailed math-
ematical deductions are provided for the use of the model. Some brief documen-
tation on PFSS-like models (SCS, HCCSSS, etc.) is also provided.

1. Basic Equation

The most common version of PFSS model (Hoeksema, 1984; Wang and Sheeley
Jr., 1992) currently in use takes global radial Carrington synoptic maps as input.
In these maps, photospheric fields are sampled on a heliographic coordinate,
evenly spaced either in latitude or sine-latitude steps. If the field is purely
potential, we have

~B = −∇Ψ, (1)

where

∇2Ψ = 0. (2)

We assume the existence of a spherical “source surface” at a radius of Rs
(usually at 2.5R�), beyond which all field lines are open and radius. The po-
tential arises from both inside the inner boundary R0 (photsphere, or R�) and
outside the outer boundary, or the source surface:

Ψ = ΨI + ΨO, (3)

with

ΨI =

∞∑
l=0

r−(l+1)
l∑

m=−l

fIlmYlm(θ, φ), (4)

ΨO =

∞∑
l=0

rl
l∑

m=−l

fOlm
Ylm(θ, φ). (5)

Scale r in terms R� for ΨI and in terms of Rs for ΨO. Use the fact that

Ylm(θ, φ) = klmP
m
l (cos θ)eimφ. (6)

The real part of Ψ can be generalized from Equation (3) through (6):
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l∑
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Pml (cos θ)

{
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r

)l+1

+
Rs
R0

(
r
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)l
clm
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+ h′lm sinmφ

[(
R0

r

)l+1

+
Rs
R0

(
r

Rs

)l
dlm

]}
, (7)

where g′lm, h′lm, clm and dlm are the unknown coefficients. Note that the nor-
malization of the spherical harmonics and associated Legendre fuctions can be
tricky. We will simply present the normalization we adopted here and leave the
detailed description to Section 2.

By definition, the field lines turn radial at the source surface. This means the
field vector is purely radial at Rs, or rather, the potential is a constant on the
source surface. Set this potential to 0, we then have

clm = dlm = −
(
R0

Rs

)l+2

= cl. (8)

Now our sole task is to determine g′lm and h′lm, using the inner boundary
condition (photospheric field). Write Br from Equation (1) specifically:

Br(r, θ, φ) = −∂Ψ

∂r
=
∑
lm

Pml (cos θ)(g′lm cosmφ+ h′lm sinmφ)[
(l + 1)

(
R0

r

)l+2

− l
(
r

Rs

)l−1
cl

]
. (9)

At inner boundary, we have

Br(R0, θ, φ) =

∞∑
l=0

l∑
m=0

Pml (cos θ)(glm cosmφ+ hlm sinmφ), (10)

where

glm = g′lm

[
l + 1 + l

(
R0

Rs

)2l+1
]
, (11)

hlm = h′lm

[
l + 1 + l

(
R0

Rs

)2l+1
]
. (12)

Now we make use of the orthogonal property of the associated Legendre function
(in our convention)

2π∫
0

dφ

π∫
0

sin θdθ Pml (cos θ)
cos

sin
mφ Pm

′

l′ (cos θ)
cos

sin
m′φ =

4π

2l + 1
δll′δmm′ . (13)

Note when m = 0 Equation (13) holds for the cosmφ case, while the sinmφ case
simply yields 0. An integration of Equation (10) then shows us how to obtain g
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and h. Here, hl0 is obviously 0.

2π∫
0

dφ

π∫
0

sin θdθ Br(R0, θ, φ)Pml (cos θ)
cos

sin
mφ =

4π

2l + 1

glm
hlm

. (14)

For a synoptic map (X ×Y ) in sine-latitude format, the Equation (14) becomes(
glm
hlm

)
=

2l + 1

XY

X∑
i=1

Y∑
j=1

Br(R0, θi, φj)P
m
l (cos θi)

cos

sin
mφj . (15)

Thus the potential is solved. There are other ways to compute g and h, as we
will see in Section 3.

To conclude, we have the solutions in the following form.

Br(r, θ, φ) = −∂Ψ

∂r
=

∞∑
l=0

l∑
m=0

Pml (cos θ)(glm cosmφ+ hlm sinmφ)×

(
R0

r

)l+2
[
l + 1 + l

(
r

Rs

)2l+1
]/[

l + 1 + l

(
R0

Rs

)2l+1
]
, (16)

Bθ(r, θ, φ) = −1

r

∂Ψ

∂θ
= −

∞∑
l=0

l∑
m=0

∂Pml (cos θ)

∂θ
(glm cosmφ+ hlm sinmφ)×

(
R0

r

)l+2
[

1−
(
r

Rs

)2l+1
]/[

l + 1 + l

(
R0

Rs

)2l+1
]
,(17)

Bφ(r, θ, φ) = − 1

r sin θ

∂Ψ

∂φ
=

∞∑
l=0

l∑
m=0

mPml (cos θ)

sin θ
(glm sinmφ− hlm cosmφ)×

(
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r

)l+2
[

1−
(
r

Rs

)2l+1
]/[

l + 1 + l

(
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]
,(18)

where g and h are determined by Equation (15).
At the poles (θ = 0, π), only some (l,m) terms contribute to the solution. This

is mainly because Pml (cos θ) ∝ sinm θ. For Br, only the m = 0 terms contribute.
For Bθ and Bφ, only the m = 1 terms contribute.

2. Issues on Normalization

The associated Legendre functions may have different normalization conventions
in different cases. From Equation (13), in our scheme we have

1∫
−1

|Pml (x)|2dx =
2

2l + 1
(2− d0), d0 =

{
1, m = 0

0, m 6= 0
. (19)
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A more widely used form is

1∫
−1

|P̃ml (x)|2dx =
2(l +m)!

(2l + 1)(l −m)!
, 0 ≤ m ≤ l, (20)

with the following properties

P̃−ml (x) = (−1)m
(l −m)!

(l +m)!
P̃ml (x), (21)

P̃ ll (x) = (−1)l(2l − 1)!!(1− x2)l/2, (22)

(l −m+ 1)P̃ml+1(x) = (2l + 1)xP̃ml (x)− (l +m)P̃ml−1(x). (23)

Two sets of Legendre functions are related by

Pml (x) = (−1)m

√
(l −m)!

(l +m)!

√
2− d0P̃ml (x). (24)

So in our convention Equation (21)-(23) become

P−ml (x) = (−1)mPml (x), (25)

P ll (x) =

√
(2l − 1)!!

(2l)!!

√
2− d0(1− x2)l/2, (26)

√
(l + 1)2 −m2Pml+1(x) = (2l + 1)xPml (x)−

√
l2 −m2Pml−1(x). (27)

Equation (24) can be used to convert standard Legendre functions for our use.
Equations (25)-(27) can be used recursively to generate our own set of Leg-

endre functions. In our implementation (Zhao and Hoeksema, 1994), we start
by calculating Pmm using Equation (26). Then we calculate all terms for fixed m
using Equation (27), utilizing the fact that Pmm−1(x) = 0.

We also need to calculate ∂Pml (cos θ)/∂θ. In our implementation, we have

√
(l + 1)2 −m2

dPml+1(x)

dx
= (2l + 1)

[
x
dPml (x)

dx
−
√

1− x2Pml (x)

]
−
√
l2 −m2

dPml−1(x)

dx
. (28)

3. Alternative Method for Computing g and h

We may alternatively utilize the spherical harmonic expansion result from he-
lioseismology to obtain the g and h coefficients. If the signal on the photosphere
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at a particular moment is f(θ, φ), then

f(θ, φ) =

∞∑
l=0

l∑
m=−l

fml Y
m
l (θ, φ), fml ∈ C, (29)

with the following normalization

2π∫
0

dφ

π∫
0

sin θdθY ml (θ, φ)Y m
′∗

l′ (θ, φ) = 4πδll′δmm′ . (30)

In the most common version,

Y −ml = (−1)mY m∗l . (31)

Consider Equation (6), (20), (30) and (31), we have

Y ml (θ, φ) =

√
(2l + 1)

(l −m)!

(l +m)!
P̃ml (cos θ)eimφ, (32)

where P̃ml is defined in Equation (20). So we have the following expansion:

fml =
1

4π

2π∫
0

dφ

π∫
0

sin θf(θ, φ)Y m∗l (θ, φ)

=
1

4π

2π∫
0

dφ

π∫
0

sin θf(θ, φ)

√
(2l + 1)

(l −m)!

(l +m)!
P̃ml (cos θ)e−imφ

=
(−1)m

4π

√
2l + 1

2− d0

2π∫
0

dφ

π∫
0

sin θf(θ, φ)Pml (cos θ)e−imφ. (33)

Compare this with Equation (15), we find the connection

glm = (−1)m
√

(2l + 1)(2− d0) <(fml ), (34)

hlm = −(−1)m
√

(2l + 1)(2− d0) =(fml ). (35)

4. Two Other Versions: Global Helioseismology and Solarsoft

As different codes may use different normalizations and algorithms, we need to
be careful when using coefficient sets. Here are two other codes the community
is using.

Schou’s (Schou and Brown, 1994) global helioseismology code is adapted to
compute the harmonic expansion coefficient. The synoptic map is considered
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as a single point time series. FFT is first applied on each row of points and a
mask dot product is used to get the coefficient. In this version, fml is given for
non-negative m’s. The following quations link the result to our g’s and h’s.

glm =

√
(2l + 1)(2− d0)

2
<(fml ), (36)

hlm =

√
(2l + 1)(2− d0)

2
=(fml ). (37)

The PFSS package in Solar Soft takes another road. The map is first resam-
pled to the optimized Gauss-Legendre grid before computes fIlm and fOlm

in
Equation (4) and (5). The result satisfies

glm ∝ <(−lfIlm + (l + 1)fOlm
), (38)

hlm ∝ =(−lfIlm + (l + 1)fOlm
). (39)

The result might be sensitive to the resampling. The constant factor here is yet
to be established.

5. PFSS-Like Models

The effect of currents are included in several other PFSS-based models. Schatten
(Schatten, 1971) proposed a model called potential-field-current-sheet (PFCS)
that includes the effect of the current sheets in streamers. Zhao and Hoeksema
(Zhao and Hoeksema, 1994) provided a modified horizontal-current-current-
sheet model (HCCS) that introduces the effect of horizontal current, based on
Bogdan and Low’s (Bogdan and Low, 1986) magnetic-static solution. Later, Zhao
and Hoeksema (Zhao and Hoeksema, 1995) revised the HCCS model, adding a
source surface at a higher altitude. This new model is called horizontal-current-
current-sheet-source-surface (HCCSSS) model.

In brief, these PFSS-like models divide the solar atmosphere into different
regions. Below a spherical surface (cusp surface) the field is more potential-like,
without the effect of current sheet. Above this surface the current sheet comes
in. HCCSSS model an extra source surface at higher up opens all field to be
radial. Both the HCCS and HCCSSS models have a horizontal current flowing
everywhere.

We generalize the algorithm as following (Zhao and Hoeksema, 1994; Zhao and
Hoeksema, 1995). First, the field every where can be computed from a potential
function Ψ:

Ψ(r, θ, φ) =

∞∑
l=0

l∑
m=0

Rl(r)P
m
l (cos θ)(glm cosmφ+ hlm sinmφ), (40)

and fields are computed by

~B = −η(r)
∂Ψ

∂r
r̂ − 1

r

∂Ψ

∂θ
θ̂ − 1

r sin θ

∂Ψ

∂φ
φ̂, (41)
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Table 1. Various form of Rl(r) in Different Models for Equation (40)

Model Lower Region Upper Region

PFCS
R0(R0

r
)l+1[1 − ( r

Rs
)2l+1]

l + 1 + l(R0
Rs

)2l+1
R2

c

(Rc + a)l

(l + 1)(r + a)l+1

HCCS R2
0

(R0 + a)l

(l + 1)(r + a)l+1
R2

c

(Rc + a)l

(l + 1)(r + a)l+1

HCCSSS R2
0

(R0 + a)l

(l + 1)(r + a)l+1
R2

c

1
(r+a)l+1 − (r+a)l

(Rs+a)2l+1

l+1
(Rc+a)l

+
l(Rc+a)l+1

(Rs+a)2l+1

PFSS R0

(R0
r

)l+1[1 − ( r
Rs

)2l+1]

l + 1 + l(R0
Rs

)2l+1

where

η(r) = (1 +
a

r
)2, (42)

in which a parameterizes the length scale of horizontal eletric current in the
corona. Note when a = 0 we simply return to models without horizontal currents
(PFSS).

The potential is determined by boundary conditions on the imaginary spher-
ical surfaces that we use to divide solar atmosphere. (1) To get the spherical
harmonics (glm and hlm in Equation (40)), photospheric field is decomposed
for the lower region (below cusp surface). Field value is then computed at the
upper boundary of the lower region (cusp surface), where Schatten’s least-square
technique (Schatten, 1971) is used to get the coefficient for the higher region.
(2) The radial part (Φ in Equation (40)) is determined by the assumption we
make of the field on the boudaries: whether it is radial, etc. To summerize, we
put the form of Φ function in Table 1.
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