Introduction

Like many areas of science and engineering, vast quantities of  relevant data are available for heliophysical studies. Analysis of this data is essential to increasing our knowledge of the sun. Unfortunately, the volume of data presents unprecedented challenges: no longer can the data be examined manually; the scientists’ current techniques to process do not scale to the size; and even the most advanced information technologies are not designed for such volume. New techniques are needed to support the next breakthroughs in heliophysics.

Making the Best Use of the Voluminous Data 

A key issue in data mining for heliophysics is how to find regions (or events) in the data that are worthy of closer scrutiny, instead of analyzing all of the data. This can be organized by the degree to which the scientist can express desiderata to the information system. We present these in order of decreasing precision.

Database queries

If the scientist knows what s/he is looking for in precise terms, then database technology can be employed. Some preliminary work has been done in the area of efficient multivariate time series search on massive databases. However, such work needs to be enhanced in several ways.

1. The amount of data available is so massive that even seemingly narrow queries may return a substantial amount of matching data. This amount of data may be too high to be sent over computer networks from the data repository to the user. This requires a search capability that can run entirely on the system that hosts the data repository, which needs to be powerful enough to handle queries from many scientists.

2. On the other hand, seemingly broad queries may not return any matches. This is because scientists often want to search for phenomena on the edge of human knowledge. When searching on the fringes, it is easy to step over the boundary into a regime where no data has been gathered. Tools that assist scientists in understanding and visualizing the data are needed to remedy this problem.

3. The indices for the database must be identified and created. In many cases, it is not sufficient or practical to create indices only in terms of the raw data measurements (e.g., magnetic flux). Instead, higher order events (e.g., solar flare) are needed. This may require progressive processing to produce higher and higher level concepts, as well an ability to name events as they become recognized in the literature. It may also be challenging to determine the most reusable (across investigations) and valuable (essential for specific investigations) indices.

4. Along with processing to produce higher level concepts, it is important to identify relationships among these concepts, and to be able to query the database based on these semantic relationships. This enables the scientist to use a more abstract query language to interrogate the data based on the data context and, and to detect data that satisfy complex contextual constraints.

Ad hoc retrieval

When the scientist has some idea of what is wanted, but cannot specify it exactly, ad hoc retrieval is appropriate. This may be because of several reasons: the scientist has a precise data need, but must approximate it in the search language of the system; the scientist is thinking of an idealized event which does not exist, but would like to see things similar to it; or the scientist only has a rough idea of what might be interesting. With the growth of the internet, search engines have become very sophisticated and capable of dealing with enormous volume. Nonetheless, several challenges remain.

1. Internet search engines are intended to work with textual content, and make assumptions well-suited for text. These same assumptions do not hold for data. Indeed, the core concept of content is ill-defined in scientific data. New relevance models must be developed that are appropriate for the unique properties of data.

2. Likewise, the search interfaces built for textual content are not appropriate for data. Can the query be specified in the familiar “search box”, is something else needed? How can each matching result be summarized so the scientist can tell what is of interest? Should the matching data be retrieved as requested, or should it be prefetched, or should the entire search process be interactive?

3. New paradigms for searching may also need to be explored. Given the data volume and the complexity of the search parameters, it may not be possible to provide results on the fly. One possibility is to dynamically populate or refine result list, or to compute it offline. A complementary technique is filtering, which dynamically monitors incoming data for items matching the scientists’ interests.   

4. Methods by which the user’s search criteria and results can be visualized and interactively examined are needed.

Anomaly detection

The desire to search on the fringes of human knowledge can be assisted by methods that automate the process of finding anomalous data ​– potentially unknown, interesting phenomena. These methods are able to operate without requiring input from the scientist because they look for anomalies using properties of the data themselves. For example, density-based anomaly detection methods assume that normal data tend to form clusters of many points that presumably represent common modes and that anomalous data tend to appear in low density regions. Distance-based anomaly detection methods assume that normal data has neighbors that are relatively nearby whereas anomalous data points have relatively distant neighbors. Once these methods identify anomalies based on the data, the scientist can check if the anomalies are scientifically significant. Anomaly detection methods could be improved on several fronts:

1. As mentioned earlier, anomaly detection methods assume that normal data points and abnormal data points have certain characteristics (e.g., high density vs. low density). Techniques to combine multiple anomaly detection methods may focus the scientist on the most anomalous data points (according to multiple models), which are presumably the most interesting. 

2. Anomaly detection methods often return too many false positives, increasing the amount of uninteresting data that the scientist must examine. More complex specifications of normality from the scientist could greatly reduce these false positives, for instance, when encountering spatiotemporal phenomena and changing data.

3. Efficiency concerns and the segmentation of very large datasets over multiple machines points to distributed solutions. However, most anomaly detection methods cannot operate in a distributed manner, and not all that do guarantee to return the same anomalies as what the centralized algorithm would return. How to parallelize these algorithms remains an open question.

4. Just as with retrieval, with anomaly detection, interactive visualization of user’s inputs and results is needed.

Next Steps

Advances in database query, ad hoc retrieval and anomaly detection technology for massive datasets should also enable studying data across missions. Currently, most data mining is done within the context of a single mission. Working with data from multiple missions will greatly increase the scope of work and the potential to gain new knowledge.

There are concrete steps that can be taken in the near term, of which two are the following.

1. There is the need to look at data mining efforts within other fields (such as particle physics and Earth sciences) to draw lessons learned.

2. There is the need to identify some concrete challenge problems for which we can examine the literature to determine what has been done, identify what needs to be done, and then find ways (e.g., funding vehicles) to get that work done. We selected on the problem of devising a (universal?) metric of similarity for Heliophysics events out of several possibilities. The main difficulty in this problem is identifying the (accepted?) key features that represent a pattern within the space of Heliophysics events.
